3.734 \(\int \sqrt{a+b \sec (c+d x)} (a^2-b^2 \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=353 \[ \frac{2 \sqrt{a+b} \left (3 a^2+a b-b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{3 d}-\frac{2 a^2 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}-\frac{2 b^2 \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d}+\frac{2 a (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 d} \]

[Out]

(2*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]
*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) + (2*Sqrt[a + b]*(3*a^2 +
 a*b - b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 -
 Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) - (2*a^2*Sqrt[a + b]*Cot[c + d*x]*Elli
pticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(
a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (2*b^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.402935, antiderivative size = 353, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.219, Rules used = {4042, 3918, 4058, 3921, 3784, 3832, 4004} \[ \frac{2 \sqrt{a+b} \left (3 a^2+a b-b^2\right ) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 d}-\frac{2 a^2 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}-\frac{2 b^2 \tan (c+d x) \sqrt{a+b \sec (c+d x)}}{3 d}+\frac{2 a (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sec[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2),x]

[Out]

(2*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]
*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) + (2*Sqrt[a + b]*(3*a^2 +
 a*b - b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 -
 Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) - (2*a^2*Sqrt[a + b]*Cot[c + d*x]*Elli
pticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(
a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (2*b^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 4042

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Dist[
C/b^2, Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[-a + b*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x
] && EqQ[A*b^2 + a^2*C, 0]

Rule 3918

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 2)*Simp[a^2*c
*m + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)*Csc[e + f*x] + b*(b*c*m + a*d*(2*m - 1))*Csc[e + f*x]^2, x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \sqrt{a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx &=-\int (-a+b \sec (c+d x)) (a+b \sec (c+d x))^{3/2} \, dx\\ &=-\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}-\frac{2}{3} \int \frac{-\frac{3 a^3}{2}-\frac{1}{2} b \left (3 a^2-b^2\right ) \sec (c+d x)+\frac{1}{2} a b^2 \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}-\frac{2}{3} \int \frac{-\frac{3 a^3}{2}+\left (-\frac{a b^2}{2}-\frac{1}{2} b \left (3 a^2-b^2\right )\right ) \sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx-\frac{1}{3} \left (a b^2\right ) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{2 a (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}+a^3 \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{1}{3} \left (b \left (3 a^2+a b-b^2\right )\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{2 a (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 d}+\frac{2 \sqrt{a+b} \left (3 a^2+a b-b^2\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac{2 a^2 \sqrt{a+b} \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}-\frac{2 b^2 \sqrt{a+b \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 12.7076, size = 598, normalized size = 1.69 \[ \frac{\cos ^2(c+d x) \sqrt{a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \left (-\frac{4}{3} a b \sin (c+d x)-\frac{4}{3} b^2 \tan (c+d x)\right )}{d \left (a^2 \cos (2 c+2 d x)+a^2-2 b^2\right )}-\frac{4 \cos ^2\left (\frac{1}{2} (c+d x)\right ) \cos ^2(c+d x) \sqrt{a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \left (-2 i \left (-3 a^2 b+3 a^3-a b^2+b^3\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a+b}{a-b}\right )+12 i a^3 \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right )-a b \sqrt{\frac{b-a}{a+b}} \cos (c+d x) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right ) (a \cos (c+d x)+b)+2 i a b (a-b) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right )\right )}{3 d \sqrt{\frac{b-a}{a+b}} (a \cos (c+d x)+b) \left (a^2 \cos (2 c+2 d x)+a^2-2 b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2),x]

[Out]

(-4*Cos[(c + d*x)/2]^2*Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2)*((2*I)*a*(a - b)*b*S
qrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[I*ArcSi
nh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)] - (2*I)*(3*a^3 - 3*a^2*b - a*b^2 + b^3)*Sqrt[Cos
[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[I*ArcSinh[Sqrt
[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)] + (12*I)*a^3*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt
[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a
+ b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)] - a*b*Sqrt[(-a + b)/(a + b)]*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(
c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*Sqrt[(-a + b)/(a + b)]*d*(b + a*Cos[c + d*x])*(a^2 - 2*b^2 + a^2*Cos[2*c +
 2*d*x])) + (Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2)*((-4*a*b*Sin[c + d*x])/3 - (4*
b^2*Tan[c + d*x])/3))/(d*(a^2 - 2*b^2 + a^2*Cos[2*c + 2*d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.505, size = 1508, normalized size = 4.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2-b^2*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/3/d*(-1+cos(d*x+c))^2*(3*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-3*cos(d*x+c)^2*sin(d*x+c)
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/s
in(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+cos(d*x+c)^2*
sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3-cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-cos(d
*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE
((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-6*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1
/2))*a^3+3*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-3*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*
x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*a^2*b+cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(
cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*b^3-cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-cos(d*x+c)*sin(d*x+c)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),
((a-b)/(a+b))^(1/2))*a*b^2-6*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^3+cos(d*x+c)^3*a^2*b+co
s(d*x+c)^3*a*b^2-cos(d*x+c)^2*a^2*b+cos(d*x+c)^2*a*b^2+cos(d*x+c)^2*b^3-2*cos(d*x+c)*a*b^2-b^3)*((b+a*cos(d*x+
c))/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2/(b+a*cos(d*x+c))/cos(d*x+c)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int{\left (b^{2} \sec \left (d x + c\right )^{2} - a^{2}\right )} \sqrt{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2-b^2*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-integrate((b^2*sec(d*x + c)^2 - a^2)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-{\left (b^{2} \sec \left (d x + c\right )^{2} - a^{2}\right )} \sqrt{b \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2-b^2*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*sec(d*x + c)^2 - a^2)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a - b \sec{\left (c + d x \right )}\right ) \left (a + b \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2-b**2*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((a - b*sec(c + d*x))*(a + b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -{\left (b^{2} \sec \left (d x + c\right )^{2} - a^{2}\right )} \sqrt{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2-b^2*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(-(b^2*sec(d*x + c)^2 - a^2)*sqrt(b*sec(d*x + c) + a), x)